Your browser is out-of-date!

Update your browser to view this website correctly. Update my browser now


NASA Delivers Mind-Boggling New Images of the Sun

 SDO will send 1.5 terabytes of data back to Earth each day

NASA’s recently launched Solar Dynamics Observatory is returning early images that confirm an unprecedented new capability for scientists to better understand our sun’s dynamic ?processes.

A full-disk multi-wavelength extreme ultraviolet image of the sun taken by SDO on March 30, 2010. False colors trace different gas temperatures. Reds are relatively cool; blues and greens are hotter. (NASA image) Some of the images from the spacecraft show never-before-seen detail ?of material streaming outward and away from sunspots. Others show? extreme close-ups of activity on the sun’s surface. The spacecraft ?also has made the first high-resolution measurements of solar flares ?in a broad range of extreme ultraviolet wavelengths.?

?”These initial images show a dynamic sun that I had never seen in more ?than 40 years of solar research,” said Richard Fisher, director of?the Heliophysics Division at NASA Headquarters in Washington. “SDO? will change our understanding of the sun and its processes, which? affect our lives and society. This mission will have a huge impact on? science, similar to the impact of the Hubble Space Telescope on modern astrophysics.”?

The NASA Website also has video clips of solar activity here.

?Launched on Feb. 11, 2010, SDO is the most advanced spacecraft ever ?designed to study the sun. During its five-year mission, it will? examine the sun’s magnetic field and also provide a better? understanding of the role the sun plays in Earth’s atmospheric ?chemistry and climate. Since launch, engineers have been conducting ?testing and verification of the spacecraft’s components. Now fully? operational, SDO will provide images with clarity 10 times better ?than high-definition television and will return more comprehensive? science data faster than any other solar observing spacecraft.?

?SDO will determine how the sun’s magnetic field is generated structured and converted into violent solar events such as turbulent? solar wind, solar flares and coronal mass ejections. These immense clouds of material, when directed toward Earth, can cause large? magnetic storms in our planet’s magnetosphere and upper atmosphere.?

?SDO will provide critical data that will improve the ability to ?predict these space weather events. NASA’s Goddard Space Flight?Center in Greenbelt, Md., built, operates and manages the SDO ?spacecraft for the agency’s Science Mission Directorate in? Washington.?

?Space weather has been recognized as a cause of technological problems? since the invention of the telegraph in the 19th century. These ?events produce disturbances in electromagnetic fields on Earth that? can induce extreme currents in wires, disrupting power lines and?causing widespread blackouts. These solar storms can interfere with? communications between ground controllers, satellites and airplane? pilots flying near Earth’s poles. Radio noise from the storm also can? disrupt cell phone service.?

?SDO will send 1.5 terabytes of data back to Earth each day, which is? equivalent to a daily download of half a million songs onto an MP3 ?player. The observatory carries three state-of the-art instruments ?for conducting solar research.?

?The Helioseismic and Magnetic Imager maps solar magnetic fields and ?looks beneath the sun’s opaque surface. The experiment will decipher ?the physics of the sun’s activity, taking pictures in several very? narrow bands of visible light. Scientists will be able to make? ultrasound images of the sun and study active regions in a way ?similar to watching sand shift in a desert dune. The instrument’s principal investigator is Phil Scherrer of Stanford University. HMI ?was built by a collaboration of Stanford University and the Lockheed ?Martin Solar and Astrophysics Laboratory in Palo Alto, Calif.?

?The Atmospheric Imaging Assembly is a group of four telescopes ?designed to photograph the sun’s surface and atmosphere. The ?instrument covers 10 different wavelength bands, or colors, selected?to reveal key aspects of solar activity. These types of images will ?show details never seen before by scientists. The principal ?investigator is Alan Title of the Lockheed Martin Solar and ?Astrophysics Laboratory, which built the instrument.?

?The Extreme Ultraviolet Variability Experiment measures fluctuations? in the sun’s radiant emissions. These emissions have a direct and ?powerful effect on Earth’s upper atmosphere — heating it, puffing it? up, and breaking apart atoms and molecules. Researchers don’t know? how fast the sun can vary at many of these wavelengths, so they? expect to make discoveries about flare events. The principal? investigator is Tom Woods of the Laboratory for Atmospheric and Space? Physics at the University of Colorado, Boulder. LASP built the ?instrument.?

?”These amazing images, which show our dynamic sun in a new level of?detail, are only the beginning of SDO’s contribution to our?understanding of the sun,” said SDO Project Scientist Dean Pesnell of?Goddard.?

?SDO is the first mission of NASA’s Living with a Star Program, or LWS,? and the crown jewel in a fleet of NASA missions that study our sun ?and space environment. The goal of LWS is to develop the scientific ?understanding necessary to address those aspects of the connected? sun-Earth system that directly affect our lives and society.

Follow Government Video on Twitter: